Stability of Travelling Wave Solutions for Coupled Surface and Grain Boundary Motion

نویسندگان

  • Margaret Beck
  • Zhenguo Pan
  • Brian Wetton
چکیده

We investigate the spectral stability of the travelling wave solution for the coupled motion of a free surface and grain boundary that arises in materials science. In this problem a grain boundary, which separates two materials that are identical except for their crystalline orientation, evolves according to mean curvature. At a triple junction, this boundary meets the free surfaces of the two crystals, which move according to surface diffusion. The model is known to possess a unique travelling wave solution. We study the linearization about the wave, which necessarily includes a free boundary at the location of the triple junction. This makes the analysis more complex than that of standard travelling waves, and we discuss how existing theory applies in this context. Furthermore, we compute numerically the associated point spectrum by restricting the problem to a finite computational domain with appropriate physical boundary conditions. Numerical results strongly suggest that the two-dimensional wave is stable with respect to both twoand three-dimensional perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of static sinusoidal wave in deep water environment with complex boundary conditions using proposed SPH method

The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static ...

متن کامل

Orbital Stability of Periodic Travelling Waves for Coupled Nonlinear Schrödinger Equations

This article addresses orbital stability of periodic travelling-wave solutions for coupled nonlinear Schrödinger equations. We prove the existence of smooth curves of periodic travelling-wave solutions depending on the dnoidal-type functions. Orbital stability analysis is developed in the context of Hamiltonian systems. We consider both the stability problem by periodic perturbations which have...

متن کامل

Problem of Rayleigh Wave Propagation in Thermoelastic Diffusion

In this work, the problem of Rayleigh wave propagation is considered in the context of the theory of thermoelastic diffusion. The formulation is applied to a homogeneous isotropic thermoelastic half space with mass diffusion at the stress free, isothermal, isoconcentrated boundary. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obt...

متن کامل

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

متن کامل

Numerical analysis of a 3D radially symmetric grain attached to a free crystal surface

We study a 3D bicrystal containing an axially symmetric shrinking grain which is initially a spherical segment attached along a circular groove root to the flat exterior surface of the second grain. Following Mullins [1]-[3], a time dependent problem is formulated for the coupled motion of the grain boundary, the groove root, and the external surface. Numerical solutions calculated using an imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010